طبقه بندی سیگنال الکترومایوگرام سطحی با استفاده از آمارگان مرتبه بالا
Authors
Abstract:
در این مقاله یک روش کارآمد برای طبقه بندی سیگنال الکترومایوگرام سطحی را با استفاده از آمارگان مرتبه بالا ارایه می دهیم. چون تابع توزیع احتمال سیگنال الکترومایوگرام سطحی که در شرایط انقباض عضلانی ایزومتریک ثبت می گردد در بعضی موارد به توزیع گوسی بسیار نزدیک است، در بسیاری از تحقیقات گذشته این تابع توزیع گوسی فرض گردیده است. چون این فرض برای دامنه های کوچک نیرو نادرست است، در این مقاله برای استخراج ویژگی، با توجه به ماهیت غیرگوسی سیگنال الکترومایوگرام، آمارگان مرتبه های دوم، سوم، و چهارم برای این سیگنال در تاخیرهای متفاوت محاسبه و از این ویژگی ها در شناسایی الگوهای چهار حرکت ابتدایی باز و بسته کردن آرنج و چرخش به سمت داخل و خارج ساعد استفاده شده اند. از روش انتخاب ترتیبی مستقیم برای کاهش تعداد ویژگی های آمارگان مرتبه بالا استفاده کرده و طبقه بندی کننده K نزدیکترین همسایه برای دسته بندی آنها به کار گرفته شد. روش پیشنهادی در برابر تغییرات آماری نویز مقاوم بوده و در مقایسه با سایر روش های موجود، نیاز به محاسبات بیشتری برای حصول به نرخ بالا برای طبقه بندی ندارد. این امر، استفاده از روش پیشنهادی را در پروتزهایی که با سیگنال الکترومایوگرام سطحی به صورت بی درنگ کنترل می شوند امکان پذیر می سازد.
similar resources
طبقه بندی سیگنال الکترومایوگرام سطحی چند کاناله ساعد با استفاده از یک ساختار خودسازمانده فازی-عصبی
طبقه بندی با دقت بالای سیگنال الکترومایوگرام سطحی برای کنترل دست مصنوعی از عناوین مهم تحقیق در حوزه توان بخشی است. به ویژه آنکه با افزایش درجات آزادی، نرخ تشخیص درست بشدت کاهش می یابد. در مقاله حاضر بر اساس یک ساختار خودسازمانده فازی-عصبی جدید پیشنهادی پنج لایه، طبقه بندی سیگنال الکترومایوگرام چند کاناله انجام شده است. در این ساختار متناظر با ویژگی های ورودی، قواعد جدید ایجاد و وزن آنها بر اساس...
full textطبقه بندی سیگنال های الکترومایوگرام سطحی با استفاده از کورنتروپی
در این پایان نامه روش موثری برای دسته بندی سیگنال الکترومایوگرام سطحی به منظور کنترل پروتزهای مایوالکتریک ارائه می کنیم. چون سیگنال الکترومایوگرام سطحی، در دامنه های پائین نیرو ماهیتی غیرگوسی دارد و نویز محیط گوسی فرض می شود، از کورنتروپی برای استخراج ویژگی از این سیگنال استفاده می کنیم؛ زیرا کورنتروپی تنها دربرگیرنده اطلاعات مربوط به مولفه های غیرگوسی است و تخمین آن از نمونه های محدود بسیار سا...
15 صفحه اولطبقه بندی سیگنال الکترومایوگرام سطحی چند کاناله ساعد با استفاده از یک ساختار خودسازمانده فازی-عصبی
طبقه بندی با دقت بالای سیگنال الکترومایوگرام سطحی برای کنترل دست مصنوعی از عناوین مهم تحقیق در حوزه توان بخشی است. به ویژه آنکه با افزایش درجات آزادی، نرخ تشخیص درست بشدت کاهش می یابد. در مقاله حاضر بر اساس یک ساختار خودسازمانده فازی-عصبی جدید پیشنهادی پنج لایه، طبقه بندی سیگنال الکترومایوگرام چند کاناله انجام شده است. در این ساختار متناظر با ویژگی های ورودی، قواعد جدید ایجاد و وزن آنها بر اساس...
full textدستهبندی بیدرنگ سیگنال الکترومایوگرام سطحی با استفاده از کورنتروپی
در این مقاله با استفاده از کورنتروپی، روشی مؤثر برای دستهبندی سیگنال الکترومایوگرام سطحی به منظور کنترل پروتزهای مایوالکتریک ارائه شده است. چون سیگنال الکترومایوگرام سطحی در دامنههای پائین نیرو ماهیتی غیرگوسی دارد درحالیکه اغتشاش محیط گوسی فرض میشود، از کورنتروپی برای استخراج ویژگی از این سیگنال استفاده میکنیم؛ زیرا کورنتروپی...
full textدسته بندی بی درنگ سیگنال الکترومایوگرام سطحی با استفاده از کورنتروپی
در این مقاله با استفاده از کورنتروپی، روشی مؤثر برای دسته بندی سیگنال الکترومایوگرام سطحی به منظور کنترل پروتزهای مایوالکتریک ارائه شده است. چون سیگنال الکترومایوگرام سطحی در دامنه های پائین نیرو ماهیتی غیرگوسی دارد درحالی که اغتشاش محیط گوسی فرض می شود، از کورنتروپی برای استخراج ویژگی از این سیگنال استفاده می کنیم؛ زیرا کورنتروپی تنها دربرگیرنده اطلاعات مربوط به مؤلفه های غیرگوسی است و تخمین آ...
full textMy Resources
Journal title
volume 1 issue 3
pages 189- 199
publication date 2007-11-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023